
Copyright © 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy
this document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key
Cryptography Standards (PKCS)" in all material mentioning or referencing this document.
003-903015-110-000-000

A Layman's Guide to a Subset
of ASN.1, BER, and DER
An RSA Laboratories Technical Note
Burton S. Kaliski Jr.
Revised November 1, 1993*

Abstract. This note gives a layman's introduction to a subset of OSI's Abstract Syntax Notation One
(ASN.1), Basic Encoding Rules (BER), and Distinguished Encoding Rules (DER). The particular purpose
of this note is to provide background material sufficient for understanding and implementing the PKCS
family of standards.

1. Introduction

It is a generally accepted design principle that abstraction is a key to managing
software development. With abstraction, a designer can specify a part of a
system without concern for how the part is actually implemented or represented.
Such a practice leaves the implementation open; it simplifies the specification;
and it makes it possible to state "axioms" about the part that can be proved when
the part is implemented, and assumed when the part is employed in another,
higher-level part. Abstraction is the hallmark of most modern software
specifications.

One of the most complex systems today, and one that also involves a great deal
of abstraction, is Open Systems Interconnection (OSI, described in X.200). OSI is
an internationally standardized architecture that governs the interconnection of
computers from the physical layer up to the user application layer. Objects at
higher layers are defined abstractly and intended to be implemented with objects
at lower layers. For instance, a service at one layer may require transfer of certain
abstract objects between computers; a lower layer may provide transfer services
for strings of ones and zeroes, using encoding rules to transform the abstract
objects into such strings. OSI is called an open system because it supports many
different implementations of the services at each layer.

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop
document SEC-SIG-91-17. PKCS documents are available by electronic mail to <pkcs@rsa.com>.

Page 2 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

OSI's method of specifying abstract objects is called ASN.1 (Abstract Syntax
Notation One, defined in X.208), and one set of rules for representing such
objects as strings of ones and zeros is called the BER (Basic Encoding Rules,
defined in X.209). ASN.1 is a flexible notation that allows one to define a variety
data types, from simple types such as integers and bit strings to structured types
such as sets and sequences, as well as complex types defined in terms of others.
BER describes how to represent or encode values of each ASN.1 type as a string
of eight-bit octets. There is generally more than one way to BER-encode a given
value. Another set of rules, called the Distinguished Encoding Rules (DER),
which is a subset of BER, gives a unique encoding to each ASN.1 value.

The purpose of this note is to describe a subset of ASN.1, BER and DER sufficient
to understand and implement one OSI-based application, RSA Data Security,
Inc.'s Public-Key Cryptography Standards. The features described include an
overview of ASN.1, BER, and DER and an abridged list of ASN.1 types and their
BER and DER encodings. Sections 2—4 give an overview of ASN.1, BER, and
DER, in that order. Section 5 lists some ASN.1 types, giving their notation,
specific encoding rules, examples, and comments about their application to
PKCS. Section 6 concludes with an example, X.500 distinguished names.

Advanced features of ASN.1, such as macros, are not described in this note, as
they are not needed to implement PKCS. For information on the other features,
and for more detail generally, the reader is referred to CCITT Recommendations
X.208 and X.209, which define ASN.1 and BER.

Terminology and notation. In this note, an octet is an eight-bit unsigned integer.
Bit 8 of the octet is the most significant and bit 1 is the least significant.

The following meta-syntax is used for in describing ASN.1 notation:

BIT monospace denotes literal characters in the type and value
notation; in examples, it generally denotes an octet value in
hexadecimal

n1 bold italics denotes a variable

[] bold square brackets indicate that a term is optional

{} bold braces group related terms

| bold vertical bar delimits alternatives with a group

… bold ellipsis indicates repeated occurrences

= bold equals sign expresses terms as subterms

2. ABSTRACT SYNTAX NOTATION ONE Page 3

2. Abstract Syntax Notation One

Abstract Syntax Notation One, abbreviated ASN.1, is a notation for describing
abstract types and values.

In ASN.1, a type is a set of values. For some types, there are a finite number of
values, and for other types there are an infinite number. A value of a given
ASN.1 type is an element of the type's set. ASN.1 has four kinds of type: simple
types, which are "atomic" and have no components; structured types, which have
components; tagged types, which are derived from other types; and other types,
which include the CHOICE type and the ANY type. Types and values can be given
names with the ASN.1 assignment operator (::=) , and those names can be used
in defining other types and values.

Every ASN.1 type other than CHOICE and ANY has a tag, which consists of a class
and a nonnegative tag number. ASN.1 types are abstractly the same if and only if
their tag numbers are the same. In other words, the name of an ASN.1 type does
not affect its abstract meaning, only the tag does. There are four classes of tag:

Universal, for types whose meaning is the same in all applications; these
types are only defined in X.208.

Application, for types whose meaning is specific to an application, such as
X.500 directory services; types in two different applications may
have the same application-specific tag and different meanings.

Private, for types whose meaning is specific to a given enterprise.

Context-specific, for types whose meaning is specific to a given structured
type; context-specific tags are used to distinguish between
component types with the same underlying tag within the context
of a given structured type, and component types in two different
structured types may have the same tag and different meanings.

The types with universal tags are defined in X.208, which also gives the types'
universal tag numbers. Types with other tags are defined in many places, and are
always obtained by implicit or explicit tagging (see Section 2.3). Table 1 lists
some ASN.1 types and their universal-class tags.

Page 4 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Type Tag number
(decimal)

Tag number
(hexadecimal)

INTEGER 2 02
BIT STRING 3 03
OCTET STRING 4 04
NULL 5 05
OBJECT IDENTIFIER 6 06
SEQUENCE and SEQUENCE OF 16 10
SET and SET OF 17 11
PrintableString 19 13
T61String 20 14
IA5String 22 16
UTCTime 23 17

Table 1. Some types and their universal-class tags.

ASN.1 types and values are expressed in a flexible, programming-language-like
notation, with the following special rules:

• Layout is not significant; multiple spaces and line breaks can be
considered as a single space.

• Comments are delimited by pairs of hyphens (--), or a pair of
hyphens and a line break.

• Identifiers (names of values and fields) and type references (names
of types) consist of upper- and lower-case letters, digits, hyphens,
and spaces; identifiers begin with lower-case letters; type references
begin with upper-case letters.

The following four subsections give an overview of simple types, structured
types, implicitly and explicitly tagged types, and other types. Section 5 describes
specific types in more detail.

2.1 Simple types

Simple types are those not consisting of components; they are the "atomic" types.
ASN.1 defines several; the types that are relevant to the PKCS standards are the
following:

BIT STRING, an arbitrary string of bits (ones and zeroes).

IA5String, an arbitrary string of IA5 (ASCII) characters.

INTEGER, an arbitrary integer.

2. ABSTRACT SYNTAX NOTATION ONE Page 5

NULL, a null value.

OBJECT IDENTIFIER, an object identifier, which is a sequence of integer
components that identify an object such as an algorithm or attribute
type.

OCTET STRING, an arbitrary string of octets (eight-bit values).

PrintableString, an arbitrary string of printable characters.

T61String, an arbitrary string of T.61 (eight-bit) characters.

UTCTime, a "coordinated universal time" or Greenwich Mean Time (GMT)
value.

Simple types fall into two categories: string types and non-string types. BIT
STRING, IA5String, OCTET STRING, PrintableString, T61String, and
UTCTime are string types.

String types can be viewed, for the purposes of encoding, as consisting of
components, where the components are substrings. This view allows one to
encode a value whose length is not known in advance (e.g., an octet string value
input from a file stream) with a constructed, indefinite-length encoding (see
Section 3).

The string types can be given size constraints limiting the length of values.

2.2 Structured types

Structured types are those consisting of components. ASN.1 defines four, all of
which are relevant to the PKCS standards:

SEQUENCE, an ordered collection of one or more types.

SEQUENCE OF, an ordered collection of zero or more occurrences of a
given type.

SET, an unordered collection of one or more types.

SET OF, an unordered collection of zero or more occurrences of a given
type.

The structured types can have optional components, possibly with default
values.

Page 6 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

2.3 Implicitly and explicitly tagged types

Tagging is useful to distinguish types within an application; it is also commonly
used to distinguish component types within a structured type. For instance,
optional components of a SET or SEQUENCE type are typically given distinct
context-specific tags to avoid ambiguity.

There are two ways to tag a type: implicitly and explicitly.

Implicitly tagged types are derived from other types by changing the tag of the
underlying type. Implicit tagging is denoted by the ASN.1 keywords [class
number] IMPLICIT (see Section 5.1).

Explicitly tagged types are derived from other types by adding an outer tag to
the underlying type. In effect, explicitly tagged types are structured types
consisting of one component, the underlying type. Explicit tagging is denoted by
the ASN.1 keywords [class number] EXPLICIT (see Section 5.2).

The keyword [class number] alone is the same as explicit tagging, except when
the "module" in which the ASN.1 type is defined has implicit tagging by default.
("Modules" are among the advanced features not described in this note.)

For purposes of encoding, an implicitly tagged type is considered the same as the
underlying type, except that the tag is different. An explicitly tagged type is
considered like a structured type with one component, the underlying type.
Implicit tags result in shorter encodings, but explicit tags may be necessary to
avoid ambiguity if the tag of the underlying type is indeterminate (e.g., the
underlying type is CHOICE or ANY).

2.4 Other types

Other types in ASN.1 include the CHOICE and ANY types. The CHOICE type
denotes a union of one or more alternatives; the ANY type denotes an arbitrary
value of an arbitrary type, where the arbitrary type is possibly defined in the
registration of an object identifier or integer value.

3. Basic Encoding Rules

The Basic Encoding Rules for ASN.1, abbreviated BER, give one or more ways to
represent any ASN.1 value as an octet string. (There are certainly other ways to
represent ASN.1 values, but BER is the standard for interchanging such values in
OSI.)

3. BASIC ENCODING RULES Page 7

There are three methods to encode an ASN.1 value under BER, the choice of
which depends on the type of value and whether the length of the value is
known. The three methods are primitive, definite-length encoding; constructed,
definite-length encoding; and constructed, indefinite-length encoding. Simple
non-string types employ the primitive, definite-length method; structured types
employ either of the constructed methods; and simple string types employ any of
the methods, depending on whether the length of the value is known. Types
derived by implicit tagging employ the method of the underlying type and types
derived by explicit tagging employ the constructed methods.

In each method, the BER encoding has three or four parts:

Identifier octets. These identify the class and tag number of the ASN.1
value, and indicate whether the method is primitive or constructed.

Length octets. For the definite-length methods, these give the number of
contents octets. For the constructed, indefinite-length method, these
indicate that the length is indefinite.

Contents octets. For the primitive, definite-length method, these give a
concrete representation of the value. For the constructed methods,
these give the concatenation of the BER encodings of the
components of the value.

End-of-contents octets. For the constructed, indefinite-length method, these
denote the end of the contents. For the other methods, these are
absent.

The three methods of encoding are described in the following sections.

3.1 Primitive, definite-length method

This method applies to simple types and types derived from simple types by
implicit tagging. It requires that the length of the value be known in advance.
The parts of the BER encoding are as follows:

Identifier octets. There are two forms: low tag number (for tag numbers between
0 and 30) and high tag number (for tag numbers 31 and greater).

Low-tag-number form. One octet. Bits 8 and 7 specify the class (see Table 2),
bit 6 has value "0," indicating that the encoding is primitive, and
bits 5—1 give the tag number.

Page 8 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Class Bit 8 Bit 7
universal 0 0
application 0 1
context-specific 1 0
private 1 1

Table 2. Class encoding in identifier octets.

High-tag-number form. Two or more octets. First octet is as in low-tag-
number form, except that bits 5–1 all have value "1." Second and
following octets give the tag number, base 128, most significant
digit first, with as few digits as possible, and with the bit 8 of each
octet except the last set to "1."

Length octets. There are two forms: short (for lengths between 0 and 127), and
long definite (for lengths between 0 and 21008−1).

Short form. One octet. Bit 8 has value "0" and bits 7–1 give the length.

Long form. Two to 127 octets. Bit 8 of first octet has value "1" and bits 7–1
give the number of additional length octets. Second and following
octets give the length, base 256, most significant digit first.

Contents octets. These give a concrete representation of the value (or the value of
the underlying type, if the type is derived by implicit tagging). Details for
particular types are given in Section 5.

3.2 Constructed, definite-length method

This method applies to simple string types, structured types, types derived
simple string types and structured types by implicit tagging, and types derived
from anything by explicit tagging. It requires that the length of the value be
known in advance. The parts of the BER encoding are as follows:

Identifier octets. As described in Section 3.1, except that bit 6 has value "1,"
indicating that the encoding is constructed.

Length octets. As described in Section 3.1.

Contents octets. The concatenation of the BER encodings of the components of
the value:

• For simple string types and types derived from them by implicit
tagging, the concatenation of the BER encodings of consecutive
substrings of the value (underlying value for implicit tagging).

4. DISTINGUISHED ENCODING RULES Page 9

• For structured types and types derived from them by implicit
tagging, the concatenation of the BER encodings of components of
the value (underlying value for implicit tagging).

• For types derived from anything by explicit tagging, the BER
encoding of the underlying value.

Details for particular types are given in Section 5.

3.3 Constructed, indefinite-length method

This method applies to simple string types, structured types, types derived
simple string types and structured types by implicit tagging, and types derived
from anything by explicit tagging. It does not require that the length of the value
be known in advance. The parts of the BER encoding are as follows:

Identifier octets. As described in Section 3.2.

Length octets. One octet, 80.

Contents octets. As described in Section 3.2.

End-of-contents octets. Two octets, 00 00.

Since the end-of-contents octets appear where an ordinary BER encoding might
be expected (e.g., in the contents octets of a sequence value), the 00 and 00 appear
as identifier and length octets, respectively. Thus the end-of-contents octets is
really the primitive, definite-length encoding of a value with universal class, tag
number 0, and length 0.

4. Distinguished Encoding Rules

The Distinguished Encoding Rules for ASN.1, abbreviated DER, are a subset of
BER, and give exactly one way to represent any ASN.1 value as an octet string.
DER is intended for applications in which a unique octet string encoding is
needed, as is the case when a digital signature is computed on an ASN.1 value.
DER is defined in Section 8.7 of X.509.

DER adds the following restrictions to the rules given in Section 3:

1. When the length is between 0 and 127, the short form of length
must be used

Page 10 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

2. When the length is 128 or greater, the long form of length must be
used, and the length must be encoded in the minimum number of
octets.

3. For simple string types and implicitly tagged types derived from
simple string types, the primitive, definite-length method must be
employed.

4. For structured types, implicitly tagged types derived from
structured types, and explicitly tagged types derived from
anything, the constructed, definite-length method must be
employed.

Other restrictions are defined for particular types (such as BIT STRING,
SEQUENCE, SET, and SET OF), and can be found in Section 5.

5. Notation and encodings for some types

This section gives the notation for some ASN.1 types and describes how to
encode values of those types under both BER and DER.

The types described are those presented in Section 2. They are listed
alphabetically here.

Each description includes ASN.1 notation, BER encoding, and DER encoding.
The focus of the encodings is primarily on the contents octets; the tag and length
octets follow Sections 3 and 4. The descriptions also explain where each type is
used in PKCS and related standards. ASN.1 notation is generally only for types,
although for the type OBJECT IDENTIFIER, value notation is given as well.

5.1 Implicitly tagged types

An implicitly tagged type is a type derived from another type by changing the
tag of the underlying type.

Implicit tagging is used for optional SEQUENCE components with underlying
type other than ANY throughout PKCS, and for the extendedCertificate
alternative of PKCS #7's ExtendedCertificateOrCertificate type.

ASN.1 notation:

[[class] number] IMPLICIT Type

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 11

class = UNIVERSAL | APPLICATION | PRIVATE

where Type is a type, class is an optional class name, and number is the tag
number within the class, a nonnegative integer.

In ASN.1 "modules" whose default tagging method is implicit tagging, the
notation [[class] number] Type is also acceptable, and the keyword IMPLICIT is
implied. (See Section 2.3.) For definitions stated outside a module, the explicit
inclusion of the keyword IMPLICIT is preferable to prevent ambiguity.

If the class name is absent, then the tag is context-specific. Context-specific tags
can only appear in a component of a structured or CHOICE type.

Example: PKCS #8's PrivateKeyInfo type has an optional attributes
component with an implicit, context-specific tag:

PrivateKeyInfo ::= SEQUENCE {
 version Version,
 privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
 privateKey PrivateKey,
 attributes [0] IMPLICIT Attributes OPTIONAL }

Here the underlying type is Attributes, the class is absent (i.e., context-
specific), and the tag number within the class is 0.

BER encoding. Primitive or constructed, depending on the underlying type.
Contents octets are as for the BER encoding of the underlying value.

Example: The BER encoding of the attributes component of a
PrivateKeyInfo value is as follows:

• the identifier octets are 80 if the underlying Attributes value has
a primitive BER encoding and a0 if the underlying Attributes
value has a constructed BER encoding

• the length and contents octets are the same as the length and
contents octets of the BER encoding of the underlying Attributes
value

DER encoding. Primitive or constructed, depending on the underlying type.
Contents octets are as for the DER encoding of the underlying value.

Page 12 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

5.2 Explicitly tagged types

Explicit tagging denotes a type derived from another type by adding an outer tag
to the underlying type.

Explicit tagging is used for optional SEQUENCE components with underlying
type ANY throughout PKCS, and for the version component of X.509's
Certificate type.

ASN.1 notation:

[[class] number] EXPLICIT Type

class = UNIVERSAL | APPLICATION | PRIVATE

where Type is a type, class is an optional class name, and number is the tag
number within the class, a nonnegative integer.

If the class name is absent, then the tag is context-specific. Context-specific tags
can only appear in a component of a SEQUENCE, SET or CHOICE type.

In ASN.1 "modules" whose default tagging method is explicit tagging, the
notation [[class] number] Type is also acceptable, and the keyword EXPLICIT is
implied. (See Section 2.3.) For definitions stated outside a module, the explicit
inclusion of the keyword EXPLICIT is preferable to prevent ambiguity.

Example 1: PKCS #7's ContentInfo type has an optional content component
with an explicit, context-specific tag:

ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content
 [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

Here the underlying type is ANY DEFINED BY contentType, the class is
absent (i.e., context-specific), and the tag number within the class is 0.

Example 2: X.509's Certificate type has a version component with an
explicit, context-specific tag, where the EXPLICIT keyword is omitted:

Certificate ::= ...
 version [0] Version DEFAULT v1988,
...

The tag is explicit because the default tagging method for the ASN.1 "module" in
X.509 that defines the Certificate type is explicit tagging.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 13

BER encoding. Constructed. Contents octets are the BER encoding of the
underlying value.

Example: the BER encoding of the content component of a ContentInfo value
is as follows:

• identifier octets are a0

• length octets represent the length of the BER encoding of the
underlying ANY DEFINED BY contentType value

• contents octets are the BER encoding of the underlying ANY
DEFINED BY contentType value

DER encoding. Constructed. Contents octets are the DER encoding of the
underlying value.

5.3 ANY

The ANY type denotes an arbitrary value of an arbitrary type, where the arbitrary
type is possibly defined in the registration of an object identifier or associated
with an integer index.

The ANY type is used for content of a particular content type in PKCS #7's
ContentInfo type, for parameters of a particular algorithm in X.509's
AlgorithmIdentifier type, and for attribute values in X.501's Attribute
and AttributeValueAssertion types. The Attribute type is used by PKCS
#6, #7, #8, #9 and #10, and the AttributeValueAssertion type is used in
X.501 distinguished names.

ASN.1 notation:

ANY [DEFINED BY identifier]

where identifier is an optional identifier.

In the ANY form, the actual type is indeterminate.

The ANY DEFINED BY identifier form can only appear in a component of a
SEQUENCE or SET type for which identifier identifies some other component,
and that other component has type INTEGER or OBJECT IDENTIFIER (or a
type derived from either of those by tagging). In that form, the actual type is
determined by the value of the other component, either in the registration of the
object identifier value, or in a table of integer values.

Page 14 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Example: X.509's AlgorithmIdentifier type has a component of type ANY:

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

Here the actual type of the parameter component depends on the value of the
algorithm component. The actual type would be defined in the registration of
object identifier values for the algorithm component.

BER encoding. Same as the BER encoding of the actual value.

Example: The BER encoding of the value of the parameter component is the BER
encoding of the value of the actual type as defined in the registration of object
identifier values for the algorithm component.

DER encoding. Same as the DER encoding of the actual value.

5.4 BIT STRING

The BIT STRING type denotes an arbitrary string of bits (ones and zeroes). A
BIT STRING value can have any length, including zero. This type is a string
type.

The BIT STRING type is used for digital signatures on extended certificates in
PKCS #6's ExtendedCertificate type, for digital signatures on certificates in
X.509's Certificate type, and for public keys in certificates in X.509's
SubjectPublicKeyInfo type.

ASN.1 notation:

BIT STRING

Example: X.509's SubjectPublicKeyInfo type has a component of type BIT
STRING:

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 publicKey BIT STRING }

BER encoding. Primitive or constructed. In a primitive encoding, the first
contents octet gives the number of bits by which the length of the bit string is less
than the next multiple of eight (this is called the "number of unused bits"). The
second and following contents octets give the value of the bit string, converted to
an octet string. The conversion process is as follows:

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 15

1. The bit string is padded after the last bit with zero to seven bits of
any value to make the length of the bit string a multiple of eight. If
the length of the bit string is a multiple of eight already, no padding
is done.

2. The padded bit string is divided into octets. The first eight bits of
the padded bit string become the first octet, bit 8 to bit 1, and so on
through the last eight bits of the padded bit string.

In a constructed encoding, the contents octets give the concatenation of the BER
encodings of consecutive substrings of the bit string, where each substring except
the last has a length that is a multiple of eight bits.

Example: The BER encoding of the BIT STRING value "011011100101110111" can
be any of the following, among others, depending on the choice of padding bits,
the form of length octets, and whether the encoding is primitive or constructed:

03 04 06 6e 5d c0 DER encoding

03 04 06 6e 5d e0 padded with "100000"

03 81 04 06 6e 5d c0 long form of length octets

23 09 constructed encoding: "0110111001011101" + "11"
 03 03 00 6e 5d
 03 02 06 c0

DER encoding. Primitive. The contents octects are as for a primitive BER
encoding, except that the bit string is padded with zero-valued bits.

Example: The DER encoding of the BIT STRING value "011011100101110111" is

03 04 06 6e 5d c0

5.5 CHOICE

The CHOICE type denotes a union of one or more alternatives.

The CHOICE type is used to represent the union of an extended certificate and an
X.509 certificate in PKCS #7's ExtendedCertificateOrCertificate type.

ASN.1 notation:

CHOICE {
 [identifier1] Type1,

Page 16 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

 …,
 [identifiern] Typen }

where identifier1 , …, identifiern are optional, distinct identifiers for the
alternatives, and Type1, …, Typen are the types of the alternatives. The identifiers
are primarily for documentation; they do not affect values of the type or their
encodings in any way.

The types must have distinct tags. This requirement is typically satisfied with
explicit or implicit tagging on some of the alternatives.

Example: PKCS #7's ExtendedCertificateOrCertificate type is a CHOICE
type:

ExtendedCertificateOrCertificate ::= CHOICE {
 certificate Certificate, -- X.509
 extendedCertificate [0] IMPLICIT ExtendedCertificate
}

Here the identifiers for the alternatives are certificate and
extendedCertificate, and the types of the alternatives are Certificate
and [0] IMPLICIT ExtendedCertificate.

BER encoding. Same as the BER encoding of the chosen alternative. The fact that
the alternatives have distinct tags makes it possible to distinguish between their
BER encodings.

Example: The identifier octets for the BER encoding are 30 if the chosen
alternative is certificate, and a0 if the chosen alternative is
extendedCertificate.

DER encoding. Same as the DER encoding of the chosen alternative.

5.6 IA5String

The IA5String type denotes an arbtrary string of IA5 characters. IA5 stands for
International Alphabet 5, which is the same as ASCII. The character set includes
non-printing control characters. An IA5String value can have any length,
including zero. This type is a string type.

The IA5String type is used in PKCS #9's electronic-mail address, unstructured-
name, and unstructured-address attributes.

ASN.1 notation:

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 17

IA5String

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the IA5 string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
consecutive substrings of the IA5 string.

Example: The BER encoding of the IA5String value "test1@rsa.com" can be any
of the following, among others, depending on the form of length octets and
whether the encoding is primitive or constructed:

16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d DER encoding

16 81 0d long form of length octets
 74 65 73 74 31 40 72 73 61 2e 63 6f 6d

36 13 constructed encoding: "test1" + "@" + "rsa.com"
 16 05 74 65 73 74 31
 16 01 40
 16 07 72 73 61 2e 63 6f 6d

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the IA5String value "test1@rsa.com" is

16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d

5.7 INTEGER

The INTEGER type denotes an arbitrary integer. INTEGER values can be positive,
negative, or zero, and can have any magnitude.

The INTEGER type is used for version numbers throughout PKCS, cryptographic
values such as modulus, exponent, and primes in PKCS #1's RSAPublicKey and
RSAPrivateKey types and PKCS #3's DHParameter type, a message-digest
iteration count in PKCS #5's PBEParameter type, and version numbers and
serial numbers in X.509's Certificate type.

ASN.1 notation:

INTEGER [{ identifier1(value1) … identifiern(valuen) }]

where identifier1, …, identifiern are optional distinct identifiers and value1, …,
valuen are optional integer values. The identifiers, when present, are associated
with values of the type.

Page 18 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Example: X.509's Version type is an INTEGER type with identified values:

Version ::= INTEGER { v1988(0) }

The identifier v1988 is associated with the value 0. X.509's Certificate type
uses the identifier v1988 to give a default value of 0 for the version
component:

Certificate ::= ...
 version Version DEFAULT v1988,
...

BER encoding. Primitive. Contents octets give the value of the integer, base 256,
in two's complement form, most significant digit first, with the minimum
number of octets. The value 0 is encoded as a single 00 octet.

Some example BER encodings (which also happen to be DER encodings) are
given in Table 3.

Integer
value

BER encoding

0 02 01 00
127 02 01 7F
128 02 02 00 80
256 02 02 01 00
-128 02 01 80
-129 02 02 FF 7F

Table 3. Example BER encodings of INTEGER values.

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

5.8 NULL

The NULL type denotes a null value.

The NULL type is used for algorithm parameters in several places in PKCS.

ASN.1 notation:

NULL

BER encoding. Primitive. Contents octets are empty.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 19

Example: The BER encoding of a NULL value can be either of the following, as
well as others, depending on the form of the length octets:

05 00

05 81 00

DER encoding. Primitive. Contents octets are empty; the DER encoding of a
NULL value is always 05 00.

5.9 OBJECT IDENTIFIER

The OBJECT IDENTIFIER type denotes an object identifier, a sequence of
integer components that identifies an object such as an algorithm, an attribute
type, or perhaps a registration authority that defines other object identifiers. An
OBJECT IDENTIFIER value can have any number of components, and
components can generally have any nonnegative value. This type is a non-string
type.

OBJECT IDENTIFIER values are given meanings by registration authorities.
Each registration authority is responsible for all sequences of components
beginning with a given sequence. A registration authority typically delegates
responsibility for subsets of the sequences in its domain to other registration
authorities, or for particular types of object. There are always at least two
components.

The OBJECT IDENTIFIER type is used to identify content in PKCS #7's
ContentInfo type, to identify algorithms in X.509's AlgorithmIdentifier
type, and to identify attributes in X.501's Attribute and
AttributeValueAssertion types. The Attribute type is used by PKCS #6,
#7, #8, #9, and #10, and the AttributeValueAssertion type is used in X.501
distinguished names. OBJECT IDENTIFIER values are defined throughout
PKCS.

ASN.1 notation:

OBJECT IDENTIFIER

The ASN.1 notation for values of the OBJECT IDENTIFIER type is

{ [identifier] component1 … componentn }

componenti = identifieri | identifieri (valuei) | valuei

Page 20 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

where identifier, identifier1, …, identifiern are identifiers, and value1, …, valuen
are optional integer values.

The form without identifier is the "complete" value with all its components; the
form with identifier abbreviates the beginning components with another object
identifier value. The identifiers identifier1, …, identifiern are intended primarily
for documentation, but they must correspond to the integer value when both are
present. These identifiers can appear without integer values only if they are
among a small set of identifiers defined in X.208.

Example: The following values both refer to the object identifier assigned to RSA
Data Security, Inc.:

{ iso(1) member-body(2) 840 113549 }
{ 1 2 840 113549 }

(In this example, which gives ASN.1 value notation, the object identifier values
are decimal, not hexadecimal.) Table 4 gives some other object identifier values
and their meanings.

Object identifier value Meaning
{ 1 2 } ISO member bodies
{ 1 2 840 } US (ANSI)
{ 1 2 840 113549 } RSA Data Security, Inc.
{ 1 2 840 113549 1 } RSA Data Security, Inc. PKCS
{ 2 5 } directory services (X.500)
{ 2 5 8 } directory services—algorithms

Table 4. Some object identifier values and their meanings.

BER encoding. Primitive. Contents octets are as follows, where value1, …, valuen
denote the integer values of the components in the complete object identifier:

1. The first octet has value 40 × value1 + value2. (This is unambiguous,
since value1 is limited to values 0, 1, and 2; value2 is limited to the
range 0 to 39 when value1 is 0 or 1; and, according to X.208, n is
always at least 2.)

2. The following octets, if any, encode value3, …, valuen. Each value is
encoded base 128, most significant digit first, with as few digits as
possible, and the most significant bit of each octet except the last in
the value's encoding set to "1."

Example: The first octet of the BER encoding of RSA Data Security, Inc.'s object
identifier is 40 × 1 + 2 = 42 = 2a16. The encoding of 840 = 6 × 128 + 4816 is 86 48

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 21

and the encoding of 113549 = 6 × 1282 + 7716 × 128 + d16 is 86 f7 0d. This leads
to the following BER encoding:

06 06 2a 86 48 86 f7 0d

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

5.10 OCTET STRING

The OCTET STRING type denotes an arbitrary string of octets (eight-bit values).
An OCTET STRING value can have any length, including zero. This type is a
string type.

The OCTET STRING type is used for salt values in PKCS #5's PBEParameter
type, for message digests, encrypted message digests, and encrypted content in
PKCS #7, and for private keys and encrypted private keys in PKCS #8.

ASN.1 notation:

OCTET STRING [SIZE ({size | size1..size2})]

where size, size1, and size2 are optional size constraints. In the OCTET STRING
SIZE (size) form, the octet string must have size octets. In the OCTET STRING
SIZE (size1..size2) form, the octet string must have between size1 and size2
octets. In the OCTET STRING form, the octet string can have any size.

Example: PKCS #5's PBEParameter type has a component of type OCTET
STRING:

PBEParameter ::= SEQUENCE {
 salt OCTET STRING SIZE(8),
 iterationCount INTEGER }

Here the size of the salt component is always eight octets.

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the value of the octet string, first octet to last octet. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
substrings of the OCTET STRING value.

Example: The BER encoding of the OCTET STRING value 01 23 45 67 89 ab
cd ef can be any of the following, among others, depending on the form of
length octets and whether the encoding is primitive or constructed:

04 08 01 23 45 67 89 ab cd ef DER encoding

Page 22 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

04 81 08 01 23 45 67 89 ab cd ef long form of length octets

24 0c constructed encoding: 01 ... 67 + 89 ... ef
 04 04 01 23 45 67
 04 04 89 ab cd ef

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The BER encoding of the OCTET STRING value 01 23 45 67 89 ab
cd ef is

04 08 01 23 45 67 89 ab cd ef

5.11 PrintableString

The PrintableString type denotes an arbitrary string of printable characters
from the following character set:

 A, B, …, Z
 a, b, …, z
 0, 1, …, 9
 (space) ' () + , - . / : = ?

This type is a string type.

The PrintableString type is used in PKCS #9's challenge-password and
unstructuerd-address attributes, and in several X.521 distinguished names
attributes.

ASN.1 notation:

PrintableString

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the printable string, encoded in ASCII. In a
constructed encoding, the contents octets give the concatenation of the BER
encodings of consecutive substrings of the string.

Example: The BER encoding of the PrintableString value "Test User 1" can be
any of the following, among others, depending on the form of length octets and
whether the encoding is primitive or constructed:

13 0b 54 65 73 74 20 55 73 65 72 20 31 DER encoding

13 81 0b 54 65 73 74 20 55 73 65 72 20 31
 long form of length octets

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 23

33 0f constructed encoding: "Test " + "User 1"
 13 05 54 65 73 74 20
 13 06 55 73 65 72 20 31

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the PrintableString value "Test User 1" is

13 0b 54 65 73 74 20 55 73 65 72 20 31

5.12 SEQUENCE

The SEQUENCE type denotes an ordered collection of one or more types.

The SEQUENCE type is used throughout PKCS and related standards.

ASN.1 notation:

SEQUENCE {
 [identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
 …,
 [identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1 , …, identifiern are optional, distinct identifiers for the
components, Type1, …, Typen are the types of the components, and value1, …,
valuen are optional default values for the components. The identifiers are
primarily for documentation; they do not affect values of the type or their
encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is optional and
need not be present in the sequence. The DEFAULT qualifier also indicates that
the value of a component is optional, and assigns a default value to the
component when the component is absent.

The types of any consecutive series of components with the OPTIONAL or
DEFAULT qualifier, as well as of any component immediately following that
series, must have distinct tags. This requirement is typically satisfied with
explicit or implicit tagging on some of the components.

Example: X.509's Validity type is a SEQUENCE type with two components:

Validity ::= SEQUENCE {
 start UTCTime,
 end UTCTime }

Page 24 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Here the identifiers for the components are start and end, and the types of the
components are both UTCTime.

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the components of the sequence, in order of definition,
with the following rules for components with the OPTIONAL and DEFAULT
qualifiers:

• if the value of a component with the OPTIONAL or DEFAULT
qualifier is absent from the sequence, then the encoding of that
component is not included in the contents octets

• if the value of a component with the DEFAULT qualifier is the
default value, then the encoding of that component may or may not
be included in the contents octets

DER encoding. Constructed. Contents octets are the same as the BER encoding,
except that if the value of a component with the DEFAULT qualifier is the default
value, the encoding of that component is not included in the contents octets.

5.13 SEQUENCE OF

The SEQUENCE OF type denotes an ordered collection of zero or more
occurrences of a given type.

The SEQUENCE OF type is used in X.501 distinguished names.

ASN.1 notation:

SEQUENCE OF Type

where Type is a type.

Example: X.501's RDNSequence type consists of zero or more occurences of the
RelativeDistinguishedName type, most significant occurrence first:

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the occurrences in the collection, in order of occurence.

DER encoding. Constructed. Contents octets are the concatenation of the DER
encodings of the values of the occurrences in the collection, in order of occurence.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 25

5.14 SET

The SET type denotes an unordered collection of one or more types.

The SET type is not used in PKCS.

ASN.1 notation:

SET {
 [identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
 …,
 [identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1, …, identifiern are optional, distinct identifiers for the
components, Type1, …, Typen are the types of the components, and value1, …,
valuen are optional default values for the components. The identifiers are
primarily for documentation; they do not affect values of the type or their
encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is optional and
need not be present in the set. The DEFAULT qualifier also indicates that the
value of a component is optional, and assigns a default value to the component
when the component is absent.

The types must have distinct tags. This requirement is typically satisfied with
explicit or implicit tagging on some of the components.

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the components of the set, in any order, with the
following rules for components with the OPTIONAL and DEFAULT qualifiers:

• if the value of a component with the OPTIONAL or DEFAULT
qualifier is absent from the set, then the encoding of that
component is not included in the contents octets

• if the value of a component with the DEFAULT qualifier is the
default value, then the encoding of that component may or may not
be included in the contents octets

DER encoding. Constructed. Contents octets are the same as for the BER
encoding, except that:

1. If the value of a component with the DEFAULT qualifier is the
default value, the encoding of that component is not included.

Page 26 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

2. There is an order to the components, namely ascending order by
tag.

5.15 SET OF

The SET OF type denotes an unordered collection of zero or more occurrences of
a given type.

The SET OF type is used for sets of attributes in PKCS #6, #7, #8, #9 and #10, for
sets of message-digest algorithm identifiers, signer information, and recipient
information in PKCS #7, and in X.501 distinguished names.

ASN.1 notation:

SET OF Type

where Type is a type.

Example: X.501's RelativeDistinguishedName type consists of zero or more
occurrences of the AttributeValueAssertion type, where the order is
unimportant:

RelativeDistinguishedName ::=
 SET OF AttributeValueAssertion

BER encoding. Constructed. Contents octets are the concatenation of the BER
encodings of the values of the occurrences in the collection, in any order.

DER encoding. Constructed. Contents octets are the same as for the BER
encoding, except that there is an order, namely ascending lexicographic order of
BER encoding. Lexicographic comparison of two different BER encodings is done
as follows: Logically pad the shorter BER encoding after the last octet with
dummy octets that are smaller in value than any normal octet. Scan the BER
encodings from left to right until a difference is found. The smaller-valued BER
encoding is the one with the smaller-valued octet at the point of difference.

5.16 T61String

The T61String type denotes an arbtrary string of T.61 characters. T.61 is an
eight-bit extension to the ASCII character set. Special "escape" sequences specify
the interpretation of subsequent character values as, for example, Japanese; the
initial interpretation is Latin. The character set includes non-printing control
characters. The T61String type allows only the Latin and Japanese character
interepretations, and implementors' agreements for directory names exclude

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 27

control characters [NIST92]. A T61String value can have any length, including
zero. This type is a string type.

The T61String type is used in PKCS #9's unstructured-address and challenge-
password attributes, and in several X.521 attributes.

ASN.1 notation:

T61String

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the T.61 string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
consecutive substrings of the T.61 string.

Example: The BER encoding of the T61String value "clés publiques" (French for
"public keys") can be any of the following, among others, depending on the form
of length octets and whether the encoding is primitive or constructed:

14 0f DER encoding
 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

14 81 0f long form of length octets
 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

34 15 constructed encoding: "clés" + " " + "publiques"
 14 05 63 6c c2 65 73
 14 01 20
 14 09 70 75 62 6c 69 71 75 65 73

The eight-bit character c2 is a T.61 prefix that adds an acute accent (´) to the next
character.

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the T61String value "clés publiques" is

14 0f 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

5.17 UTCTime

The UTCTime type denotes a "coordinated universal time" or Greenwich Mean
Time (GMT) value. A UTCTime value includes the local time precise to either
minutes or seconds, and an offset from GMT in hours and minutes. It takes any
of the following forms:

Page 28 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

YYMMDDhhmmZ
YYMMDDhhmm+hh'mm'
YYMMDDhhmm-hh'mm'
YYMMDDhhmmssZ
YYMMDDhhmmss+hh'mm'
YYMMDDhhmmss-hh'mm'

where:

YY is the least significant two digits of the year

MM is the month (01 to 12)

DD is the day (01 to 31)

hh is the hour (00 to 23)

mm are the minutes (00 to 59)

ss are the seconds (00 to 59)

Z indicates that local time is GMT, + indicates that local time is later than
GMT, and - indicates that local time is earlier than GMT

hh' is the absolute value of the offset from GMT in hours

mm' is the absolute value of the offset from GMT in minutes

This type is a string type.

The UTCTime type is used for signing times in PKCS #9's signing-time attribute
and for certificate validity periods in X.509's Validity type.

ASN.1 notation:

UTCTime

BER encoding. Primitive or constructed. In a primitive encoding, the contents
octets give the characters in the string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings of
consecutive substrings of the string. (The constructed encoding is not particularly
interesting, since UTCTime values are so short, but the constructed encoding is
permitted.)

Example: The time this sentence was originally written was 4:45:40 p.m. Pacific
Daylight Time on May 6, 1991, which can be represented with either of the
following UTCTime values, among others:

6. AN EXAMPLE Page 29

"910506164540-0700"

"910506234540Z"

These values have the following BER encodings, among others:

17 0d 39 31 30 35 30 36 32 33 34 35 34 30 5a

17 11 39 31 30 35 30 36 31 36 34 35 34 30 2D 30 37 30
 30

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

6. An example

This section gives an example of ASN.1 notation and DER encoding: the X.501
type Name.

6.1 Abstract notation

This section gives the ASN.1 notation for the X.501 type Name.

Name ::= CHOICE {
 RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::=
 SET OF AttributeValueAssertion

AttributeValueAssertion ::= SEQUENCE {
 AttributeType,
 AttributeValue }

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY

The Name type identifies an object in an X.500 directory. Name is a CHOICE type
consisting of one alternative: RDNSequence. (Future revisions of X.500 may have
other alternatives.)

The RDNSequence type gives a path through an X.500 directory tree starting at
the root. RDNSequence is a SEQUENCE OF type consisting of zero or more
occurences of RelativeDistinguishedName.

Page 30 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

The RelativeDistinguishedName type gives a unique name to an object
relative to the object superior to it in the directory tree.
RelativeDistinguishedName is a SET OF type consisting of zero or more
occurrences of AttributeValueAssertion.

The AttributeValueAssertion type assigns a value to some attribute of a
relative distinguished name, such as country name or common name.
AttributeValueAssertion is a SEQUENCE type consisting of two
components, an AttributeType type and an AttributeValue type.

The AttributeType type identifies an attribute by object identifier. The
AttributeValue type gives an arbitrary attribute value. The actual type of the
attribute value is determined by the attribute type.

6.2 DER encoding

This section gives an example of a DER encoding of a value of type Name,
working from the bottom up.

The name is that of the Test User 1 from the PKCS examples [Kal93]. The name is
represented by the following path:

(root)
|

countryName = "US"
|

organizationName = "Example Organization"
|

commonName = "Test User 1"

Each level corresponds to one RelativeDistinguishedName value, each of
which happens for this name to consist of one AttributeValueAssertion
value. The AttributeType value is before the equals sign, and the
AttributeValue value (a printable string for the given attribute types) is after
the equals sign.

The countryName, organizationName, and commonUnitName are attribute
types defined in X.520 as:

attributeType OBJECT IDENTIFIER ::=
 { joint-iso-ccitt(2) ds(5) 4 }

countryName OBJECT IDENTIFIER ::= { attributeType 6 }
organizationName OBJECT IDENTIFIER ::=
 { attributeType 10 }

6. AN EXAMPLE Page 31

commonUnitName OBJECT IDENTIFIER ::=
 { attributeType 3 }

6.2.1 AttributeType

The three AttributeType values are OCTET STRING values, so their DER
encoding follows the primitive, definite-length method:

06 03 55 04 06 countryName

06 03 55 04 0a organizationName

06 03 55 04 03 commonName

The identifier octets follow the low-tag form, since the tag is 6 for OBJECT
IDENTIFIER. Bits 8 and 7 have value "0," indicating universal class, and bit 6 has
value "0," indicating that the encoding is primitive. The length octets follow the
short form. The contents octets are the concatenation of three octet strings
derived from subidentifiers (in decimal): 40 × 2 + 5 = 85 = 5516; 4; and 6, 10, or 3.

6.2.2 AttributeValue

The three AttributeValue values are PrintableString values, so their
encodings follow the primitive, definite-length method:

13 02 55 53 "US"

13 14 "Example Organization"
 45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
 74 69 6f 6e

13 0b "Test User 1"
 54 65 73 74 20 55 73 65 72 20 31

The identifier octets follow the low-tag-number form, since the tag for
PrintableString, 19 (decimal), is between 0 and 30. Bits 8 and 7 have value
"0" since PrintableString is in the universal class. Bit 6 has value "0" since the
encoding is primitive. The length octets follow the short form, and the contents
octets are the ASCII representation of the attribute value.

6.2.3 AttributeValueAssertion

The three AttributeValueAssertion values are SEQUENCE values, so their
DER encodings follow the constructed, definite-length method:

Page 32 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

30 09 countryName = "US"
 06 03 55 04 06
 13 02 55 53

30 1b organizationName = "Example Organizaiton"
 06 03 55 04 0a
 13 14 ... 6f 6e

30 12 commonName = "Test User 1"
 06 03 55 04 0b
 13 0b ... 20 31

The identifier octets follow the low-tag-number form, since the tag for
SEQUENCE, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value "0" since
SEQUENCE is in the universal class. Bit 6 has value "1" since the encoding is
constructed. The length octets follow the short form, and the contents octets are
the concatenation of the DER encodings of the attributeType and
attributeValue components.

6.2.4 RelativeDistinguishedName

The three RelativeDistinguishedName values are SET OF values, so their
DER encodings follow the constructed, definite-length method:

31 0b
 30 09 ... 55 53

31 1d
 30 1b ... 6f 6e

31 14
 30 12 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for SET OF,
17 (decimal), is between 0 and 30. Bits 8 and 7 have value "0" since SET OF is in
the universal class Bit 6 has value "1" since the encoding is constructed. The
lengths octets follow the short form, and the contents octets are the DER
encodings of the respective AttributeValueAssertion values, since there is
only one value in each set.

6.2.5 RDNSequence

The RDNSequence value is a SEQUENCE OF value, so its DER encoding follows
the constructed, definite-length method:

REFERENCES Page 33

30 42
 31 0b ... 55 53
 31 1d ... 6f 6e
 31 14 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for SEQUENCE
OF, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value "0" since SEQUENCE
OF is in the universal class. Bit 6 has value "1" since the encoding is constructed.
The lengths octets follow the short form, and the contents octets are the
concatenation of the DER encodings of the three
RelativeDistinguishedName values, in order of occurrence.

6.2.6 Name

The Name value is a CHOICE value, so its DER encoding is the same as that of the
RDNSequence value:

30 42
 31 0b
 30 09
 06 03 55 04 06 attributeType = countryName
 13 02 55 53 attributeValue = "US"
 31 1d
 30 1b
 06 03 55 04 0a attributeType = organizationName
 13 14 attributeValue = "Example Organization"
 45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
 74 69 6f 6e
 31 14
 30 12
 06 03 55 04 03 attributeType = commonName
 13 0b attributeValue = "Test User 1"
 54 65 73 74 20 55 73 65 72 20 31

References

PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November
1993.

PKCS #3 RSA Laboratories. PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4,
November 1993.

PKCS #5 RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 1.5,
November 1993.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5,
November 1993.

Page 34 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2,
November 1993.

PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10 RSA Laboratories. PKCS #10: Certification Request Syntax Standard. Version 1.0,
November 1993.

X.200 CCITT. Recommendation X.200: Reference Model of Open Systems Interconnection for
CCITT Applications. 1984.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). 1988.

X.500 CCITT. Recommendation X.500: The Directory—Overview of Concepts, Models and
Services. 1988.

X.501 CCITT. Recommendation X.501: The Directory—Models. 1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

X.520 CCITT. Recommendation X.520: The Directory—Selected Attribute Types. 1988.

[Kal93] Burton S. Kaliski Jr. Some Examples of the PKCS Standards. RSA Laboratories,
November 1993.

[NIST92] NIST. Special Publication 500-202: Stable Implementation Agreements for Open
Systems Interconnection Protocols. Part 11 (Directory Services Protocols). December
1992.

REVISION HISTORY Page 35

Revision history

June 3, 1991 version

The June 3, 1991 version is part of the initial public release of PKCS. It was
published as NIST/OSI Implementors' Workshop document SEC-SIG-91-17.

November 1, 1993 version

The November 1, 1993 version incorporates several editorial changes, including
the addition of a revision history. It is updated to be consistent with the
following versions of the PKCS documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November
1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November
1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November
1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November
1993.

The following substantive changes were made:

Section 5: Description of T61String type is added.

Section 6: Names are changed, consistent with other PKCS examples.

Author's address

Burton S. Kaliski Jr., Ph.D.
Chief Scientist

Page 36 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA burt@rsa.com

	1. Introduction
	2. Abstract Syntax Notation One
	2.1 Simple types
	2.2 Structured types
	2.3 Implicitly and explicitly tagged types
	2.4 Other types

	3. Basic Encoding Rules
	3.1 Primitive, definite-length method
	3.2 Constructed, definite-length method
	3.3 Constructed, indefinite-length method

	4. Distinguished Encoding Rules
	5. Notation and encodings for some types
	5.1 Implicitly tagged types
	5.2 Explicitly tagged types
	5.3 ANY
	5.4 BIT STRING
	5.5 CHOICE
	5.6 IA5String
	5.7 INTEGER
	5.8 NULL
	5.9 OBJECT IDENTIFIER
	5.10 OCTET STRING
	5.11 PrintableString
	5.12 SEQUENCE
	5.13 SEQUENCE OF
	5.14 SET
	5.15 SET OF
	5.16 T61String
	5.17 UTCTime

	6. An example
	6.1 Abstract notation
	6.2 DER encoding
	6.2.1 AttributeType
	6.2.2 AttributeValue
	6.2.3 AttributeValueAssertion
	6.2.4 RelativeDistinguishedName
	6.2.5 RDNSequence
	6.2.6 Name

	References
	Revision history
	June 3, 1991 version
	November 1, 1993 version

	Author's address

